Flavonol Glycosides and Iridoids from Asperula lilaciflora

by Hasan Kırmızıbekmez^{*a}), Hilal Bardakcı^a), Milena Masullo^b), Özge Kamburoğlu^c), Gonca Eryılmaz^c), Galip Akaydın^d), Erdem Yeşilada^a), and Sonia Piacente^b)

^a) Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR-34755, Kayışdağı, İstanbul (phone: +90-216-5780000-3050; fax: +90-216-5780068;

e-mail: hasankbekmez@yahoo.com)

^b) Salerno University, Department of Pharmaceutical and Biomedical Sciences, Via Ponte Don Melillo, IT-84084 Fisciano, Salerno

^c) Yeditepe University, Faculty of Pharmacy, TR-34755, Kayışdağı, İstanbul

^d) Hacettepe University, Department of Biology Education, TR-06800, Beytepe, Ankara

A new flavonol glycoside, quercetin 3-O-[6'''-O-3,5-dihydroxycinnamoyl- β -glucopyranosyl- $(1 \rightarrow 2)$]- β -galactopyranoside (named lilacifloroside; **1**) and a new iridoid **2** (named asperulogenin), were isolated from the aerial parts of *Asperula lilaciflora* in addition to eight known secondary metabolites, *i.e.*, quercetin, kaempferol, quercetin 3-O- β -glucopyranosyl- $(1 \rightarrow 2)$ - β -galactopyranoside, quercetin 3-O- β -glucopyranosyl- $(1 \rightarrow 2)$ - β -galactopyranoside, quercetin 3-O- β -glucopyranosyl- $(1 \rightarrow 2)$ - β -galactopyranoside, asperulosidic, acid methyl ester, and chlorogenic acid. The structures were elucidated on the basis of extensive 1D- and 2D-NMR experiments as well as MS data. Compound **1** contains the rare 3,5-dihydroxycinnamoyl moiety in its structure. This work constitutes the first phytochemical study of the title plant.

Introduction. – Asperula L., with a total of 183 species, is one of the most important genera in the family Rubiaceae [1]. There are *ca.* 40 Asperula species growing wild in Turkey; 19 are endemic [2]. Some members of Asperula are utilized for enhancing the volume of the urine, for the treatment of constipation, as well as tonic in Anatolian folk medicine [3]. Previous phytochemical studies on Asperula revealed that the genus contains flavonoids [4], iridoids [4][5], and anthraquinones [6] as the major secondary metabolites. In this study, we have examined the constituents of *A. lilaciflora*, an endemic species to Turkey. Several chromatographic studies of the MeOH extract of the aerial parts of *A. lilaciflora* led to the isolation of a new flavonol glycoside, named lilacifloroside (=quercetin $3-O-[6'''-O-3,5-dihydroxycinnamoyl-\beta-glucopyranosyl-(1 \rightarrow 2)]-\beta-galactopyranoside; 1) as well as a new iridoid 2 (named asperulogenin), along with eight known secondary metabolites.$

Results and Discussion. – The H₂O-soluble portion of the crude MeOH extract prepared from the aerial parts of *Asperula lilaciflora* was subjected to a series of column-chromatographic separations (polyamide, SiO₂, C_{18} -MPLC, and *Sephadex LH-20*) to obtain two new secondary metabolites, **1** and **2**, along with eight known compounds (*Fig. 1*).

The known compounds were identified as quercetin, kaempferol, quercetin $3 \cdot O \cdot \beta$ -glucopyranosyl- $(1 \rightarrow 2)$ -arabinopyranoside [7], quercetin $3 \cdot O \cdot \beta$ -glucopyranosyl- $(1 \rightarrow 2) \cdot \beta$ -galactopyranoside [8], asperuloside [9], deacetylasperulosidic acid [10], asper-

^{© 2014} Verlag Helvetica Chimica Acta AG, Zürich

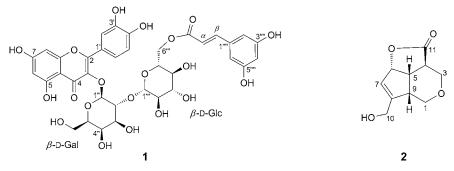


Fig. 1. Compounds 1 and 2 isolated from Asperula lilaciflora

ulosidic acid methyl ester [11], and chlorogenic acid [12] by comparison of their spectroscopic data with those reported in the literature.

Compound 1 was obtained as yellow amorphous powder. The molecular formula $C_{36}H_{36}O_{20}$ was deduced from ESI-MS (m/z 811 ($[M + Na]^+$)) and NMR data. The ¹H-NMR spectrum of **1** (*Table 1*) displayed the signals at δ (H) 7.71 (*d*, *J* = 1.8), 7.69 (dd, J = 1.8, 8.2) and 6.89 (d, J = 8.2) as ABX system. These signals taken together with the two '*meta*-coupled' signals at $\delta(H)$ 6.26 and 6.17 (d, J = 1.7, each) were indicative of a quercetin unit [13]. Moreover, AB_2 -system signals at $\delta(H)$ 6.83 (br. s, 1 H), 6.67 (t, J = 2.3, 2 H), as well as AX-type 'trans-coupled' resonances at δ (H) 7.35 and 6.03 (d, J = 15.7, each) were observed in the aromatic region of the ¹H-NMR spectrum. These signals, along with the corresponding C-atom resonances (δ (C) 168.8, 149.3 (2 C), 146.6, 127.2, 122.4 (2 C), 114.6, 114.1) were consistent with a 3,5-dihydroxycinnamoyl moiety [14]. The two anomeric H- and C-atom resonances (δ (H) 5.17 (d, J = 7.7); δ (C) 101.0; and $\delta(H)$ 4.78 (d, J=7.2); $\delta(C)$ 105.5) indicated a diglycosidic structure. The complete assignments of all H- and C-atom resonances of the disaccharide unit, based on extensive 2D-NMR experiments (COSY, HSQC, and HMBC (Table 1 and Fig. 2)) revealed the presence of β -galactopyranosyl and β -glucopyranosyl units. The presence of a β -glucopyranosyl- $(1 \rightarrow 2)$ - β -galactopyranosyl disaccharide moiety was deduced

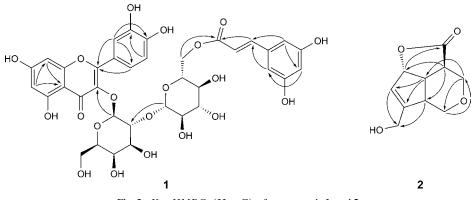


Fig. 2. Key HMBCs $(H \rightarrow C)$ of compounds 1 and 2

Position	$\delta(\mathrm{H})^{\mathrm{a}})$	$\delta(C)^a)$	HMBC $(H \rightarrow C)$
Aglycone			
2	-	157.8	
3	-	135.1	
4	-	179.0	
5	-	162.8	
6	6.17 (d, J = 1.7)	99.5	C(8), C(10)
7	-	165.7	
8	6.26 (d, J = 1.7)	94.3	C(6), C(9), C(10)
9	-	158.1	
10	-	105.1	
1′	-	123.6	
2′	7.71 $(d, J = 1.8)$	116.9	C(2), C(4'), C(6')
3'	-	145.6	
4′	-	149.5	
5'	6.89 (d, J = 8.2)	115.8	C(3')
6′	7.69 (dd, J = 1.8, 8.2)	123.2	C(2')
Gal			
1″	5.17 (d, J = 7.7)	101.0	C(3)
2''	4.05 (dd, J = 7.7, 9.4)	81.9	C(1''')
3″	3.71 (dd, J = 2.6, 9.4)	74.9	
4''	3.84 (d, J = 2.6)	69.7	
5''	3.40 - 3.44(m)	76.6	
6''	3.61 (dd, J = 11.5, 5.9),	61.5	
	3.52 (dd, J = 3.5, 11.5)		
Glc			
1‴	4.78 (d, J = 7.2)	105.5	C(2'')
2'''	3.47 (dd, J = 7.2, 7.9)	75.7	
3′′′′	3.47-3.50 ^b)	77.4	
4‴	3.42 ^b)	71.5	
5‴	3.68 - 3.72 (m)	74.9	
6'''	4.46 (dd, J = 1.9, 11.7), 4.41 (dd, J = 6.1, 11.7)	64.4	C=O
Acyl			
1''''	-	127.2	
2''''/6''''	6.67 (t, J = 2.3)	122.4	$C(4^{\prime\prime\prime\prime\prime}), C(\beta)$
3''''/5''''	_	149.3	
4''''	6.83 (br. s)	114.6	C(2""), C(6"")
$H-C(\alpha)$	6.03 (d, J = 15.7)	114.1	$C(\beta)$
$H-C(\beta)$	7.35(d, J = 15.7)	146.6	$C(\alpha), C(2''''), C(6'''')$
C=0	_	168.8	
	nts are based on COSY, HSQC, and HMBC experin		lapped signals.

Table 1. ¹H- and ¹³C-NMR Data (600 and 150 MHz, resp.; in CD₃OD), and HMBCs of 1^a)

from the downfield shift of C(2'') (δ (C) 81.9) of galactose, which was further confirmed by the long-range correlation H–C(2'') (δ (H) 4.05)/C(1''') (δ (C) 105.5) and *vice versa* in the HMBC spectrum. The glycosidation site of the disaccharide moiety to the aglycone was found to be C(3)–OH due to the cross-peak observed between the H–C(1") (δ (H) 5.17) of inner sugar (galactose) and the C(3) (δ (C) 135.1) of the flavonol moiety in the HMBC spectrum. Besides these findings, the H- and the C-atom signals of the CH₂OH group of the glucose were shifted downfield, indicating that the acylation site was C(6"). This was also confirmed by the strong HMBC between the CH₂(6") (δ (H) 4.46 and 4.41) of glucose and C=O (δ (C) 168.8) of the 3,5-dihydroxycinnamoyl moiety. Accordingly, compound **1** was identified as quercetin 3-O-[6"-O-3,5-(dihydroxycinnamoyl)- β -glucopyranosyl-(1 \rightarrow 2)]- β -galactopyranoside. To the best of knowledge, **1** is being reported for the first time and named lilacifloroside.

Compound **2** was obtained as amorphous colorless powder. The molecular formula was determined as $C_{10}H_{12}O_4$, with five degrees of unsaturation, by positive-ion mode ESI mass spectrometry (m/z 197.0 ($[M + H]^+$)) and NMR data.

The ¹H-NMR spectrum (Table 2) of 2 displayed signals of one olefinic H-atom $(\delta(H) 5.83 \text{ (br. s)})$, three CH₂–O group $(\delta(H) 4.26 (d, J = 15.0), 4.17 (d, J = 15.0), 3.94$ (dd, J = 10.8, 4.5), 3.85 (dd, J = 10.8, 3.6), 3.83 (dd, J = 11.3, 4.1), and 3.72 (dd, J = 11.3, 4.1)6.9)), one CH–O group (δ (H) 5.43 (br. d, J = 7.1), as well as three CH groups (δ (H) 3.35 (dd, J = 14.2, 6.4), 3.12 (dd, J = 11.0, 6.9), and 2.94 - 2.99 (m)) H-atom signals. Its ¹³C-NMR spectrum displayed ten resonances including those of a C=O group (δ (C) 180.1) and two olefinic C-atoms (δ (C) 153.3 and 124.6). Detailed analysis of 1D- and 2D-NMR spectra (COSY, HSQC, and HMBC (Table 2 and Fig. 2)) suggested that 2 had a C_{10} iridoid skeleton composed of cyclopentapyran ring system. The H- and Catom signals attributed to 3 and 4 were compatible with the iridoids lacking of a C(3)=C(4) bond between these C-atoms as in the case of macedonine [15]. The location of the C=O group was unambiguously assigned to be C(4) by the strong HMBCs CH₂(3)/C(11) and H–C(5)/C(11). The deshielding of H–C(6) (δ (H) 5.43), and the long-range correlation between H-C(6) and C(11), along with an additional degree of unsaturation revealed the presence of a lactone ring between the C(11)OOH and OH group at C(6) as in the case of asperuloside [9]. The relative configuration of 2 was elucidated by ROESY spectrum in which significant ROEs H_{β} -C(5)/ H_{β} -C(9), H_{β} -C(7)/ H_{β} -C(6), H_{β} -C(3)/ H_{β} -C(5), and H_{β} -C(5)/ H_{β} -C(1) indicated that these H-

Table 2. ¹H- and ¹³C-NMR Data (600 and 150, resp.; in CD₃OD), and HMBCs of **2**^a). Atom numbering as indicated in Fig. 1.

Position	$\delta(\mathrm{H})^{\mathrm{a}}$	$\delta(C)^a)$	HMBC $(H \rightarrow C)$
1	3.83 $(dd, J = 11.3, 4.1, H_{a}), 3.72 (dd, J = 11.3, 6.9, H_{\beta})$	60.7	C(3), C(9)
3	$3.94 (dd, J = 10.8, 4.5, H_{a}), 3.85 (dd, J = 10.8, 3.6, H_{b})$	62.7	C(1), C(4), C(5)
4	2.94–2.99 (<i>m</i>)	45.7	C(3), C(5), C(6), C(9)
5	3.35 (dd, J = 14.2, 6.4)	43.6	C(3), C(7), C(8)
6	5.43 (br. $d, J = 7.1$)	87.8	C(4), C(11)
7	5.83 (br. s)	124.6	C(5), C(10)
8	_	153.3	
9	3.12 (dd, J = 11.0, 6.9)	49.7	C(1), C(4), C(10)
10	4.26 (d, J = 15.0), 4.17 (d, J = 15.0)	60.4	C(8), C(7)
11	_	180.1	

^a) Assignments are based on COSY, HSQC, HMBC, and ROESY experiments.

atoms were positioned on the same side. On the other hand, H_a –C(3) correlated with H_a –C(4). Moreover, the absence of ROE correlation between H–C(4) and H–C(6) supported the proposed relative configuration. Consequently, compound **2** was elucidated as 2a,4a,5,7,7a,7b-hexahydro-4-(hydroxymethyl)-2,6-dioxacyclopenta[*cd*]-inden-1-one and given the trivial name asperulogenin.

Iridoids are useful taxonomic markers particularly in dicotyledon families. Although a few iridoid glycosides have been reported from the genus Asperula, no non-glycosidic iridoids or dihydroiridoids (lacking C(3)=C(4) bond) have been isolated from this genus so far. Compound 2 is also an unusual iridoid lacking a hemiacetal group at C(1). There exist a few compounds with quite similar structural feature like macedonine [15] and 1-dehydroxy-3,4-dihydroaucubigenin [16]. Concerning the isolated flavonol glycosides, compound **1** can be regarded as a unique flavonoid due to the presence of 3,5-dihydroxycinnamoyl moiety in its structure. This acyl unit has only been encountered in the structures of anthocyanins [14] and triterpenes [17] up to now. Furthermore, an arabinose-bearing diglycosidic flavonoid is being reported for the first time from Asperula. A similar quercetin derivative containing the same diglycoside moiety, acylated by ferulic acid, was reported from Carrichtera annua (Brassicaceae) [18]. The phylogenetic works on the Rubiaceae revealed that the genus Asperula is not monophyletic [19]. Thus, the compounds obtained in this study such as lilacifloroside (1), asperulogenin (2), and quercetin 3-O- β -glucopyranosyl- $(1 \rightarrow 2)$ arabinopyranoside might be utilized to support the phylogenetic studies and may contribute to the chemotaxonomy of the genus Asperula, particularly to its Cynanchicae section in which A. lilaciflora is placed.

Experimental Part

General. TLC: SiO₂-Coated (silica gel 60 F_{254} ; Merck) aluminum plates; eluents, CHCl₃/MeOH/H₂O 80:20:2, 70:30:3, and 61:32:7; and AcOEt/MeOH/H₂O 100:10:5; visualization by spraying with 1% vanillin/H₂SO₄ soln., followed by heating at 105° for 2–3 min. Column chromatography (CC): silica gel 60 (SiO₂, 0.063–0.200 mm; Merck, DE-Darmstadt), Polyamide (Fluka) and Sephadex LH-20 gel (Fluka). Medium-pressure liquid chromatography (MPLC): Combi Flash Companion (Isco), Redi step columns (LiChroprep C₁₈; 130 and 43 g; Teledyne Isco). Optical rotations: JASCO DIP 1000 polarimeter. UV Spectra: HP Agilent 8453 spectrophotometer; λ_{max} in nm. IR Spectra (KBr): Perkin-Elmer 2000 FT-IR spectrometer; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Bruker AMX-600 instruments (600 (¹H) and 150 MHz (¹³C)) with XWIN NMR 3.6 software package; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI-MS: Finnigan TSQ 7000 in MeOH; positive ion mode; in m/z.

Plant Material. Asperula lilaciflora BOISS. (Rubiaceae) was collected from Ermenek, Karaman, Turkey, in July 2010. The plant material was identified by one of us (*G. A.*). A voucher specimen (Akaydın 13361) was deposited with the Herbarium of Education, Hacettepe University, Ankara, Turkey.

Extraction and Isolation. The air-dried and powdered aerial parts of *A. lilaciflora* (315 g) were first left to maceration in MeOH (2 × 2.2 l; 4 d each) and then extracted at 45° for 4 h. The pooled MeOH extracts were evaporated to dryness (34 g, 10.8%), and the residue was suspended in H₂O (75 ml) and partitioned with CHCl₃ (3 × 75 ml). The H₂O fraction (20 g) was subjected to CC (*Polyamide*; MeOH/H₂O 0–100%): *Frs. A – H. Fr. B* (10.7 g) was dissolved in H₂O (15 ml) and partitioned with BuOH (4 × 15 ml). The BuOH fraction (1.05 g) was separated by MPLC (*LiChroprep C₁₈*, MeOH/H₂O 0 → 70%): *Frs. B₁ – B₁₁*. *Fr. B₂* (51 mg) was further purified by CC (SiO₂; CHCl₃/MeOH/H₂O 90:10:0 → 61:32:7): 2 (2 mg) and deacetylasperulosidic acid (4 mg). *Fr. B₆* (134 mg) was subjected to CC (SiO₂; CHCl₃/MeOH/H₂O 95:5:0 → 80:20:1): asperuloside (50 mg). Similarly, *Fr. B₉* (54.5 mg) was purified by using

the same technique: asperulosidic acid methyl ester (3 mg). *Fr. E* (290 mg) was subjected to MPLC (*LiChroprep C*₁₈; MeOH/H₂O $0 \rightarrow 90$): quercetin 3-*O*- β -glucopyranosyl-(1 \rightarrow 2)- β -galactopyranoside (20 mg). *Fr. G* (430 mg) was separated by CC (SiO₂, CH₂Cl₂/MeOH/H₂O 95:5:0 \rightarrow 50:40:10): kaempferol (1 mg), quercetin (2 mg) and *Fr. G*₇. *Fr. G*₇ (90 mg) was further purified by CC (*Sephadex LH-20*; MeOH): quercetin 3-*O*- β -glucopyranosyl-(1 \rightarrow 2)-arabinopyranoside (3 mg). Finally, *Fr. H* (433 mg) was subjected to MPLC (*LiChroprep C*₁₈; MeOH/H₂O 15 \rightarrow 100): chlorogenic acid (50 mg) and *Fr. H*₄. Compound **1** (5 mg) was obtained from *Fr. H*₄ (94 mg) by CC (SiO₂; CH₂Cl₂/MeOH/H₂O 90:10:1 \rightarrow 80:20:2).

Lilacifloroside (=Quercetin 3-O-[6'''-O-3,5-Dihydroxycinnamoyl- β -glucopyranosyl-(1 \rightarrow 2)]- β -galactopyranoside = 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 2-O-[6-O-[(2E)-3-(3,5-Dihydroxyphenyl)prop-2-enoyl]- β -D-glucopyranosyl]- β -D-galactopyranoside; 1): Yellowish amorphous powder. [a]_D²⁴ = +11.3 (c = 0.1, MeOH). UV (MeOH): 222 (4.38), 254 (4.29), 337 (4.29). IR (KBr): 3412, 1710, 1654, 1606, 1498, 1448, 1360, 1269, 1197, 1168, 1076. ¹H- and ¹³C-NMR: Table 1. ESI-MS (pos.): 811.3 ([M + Na]⁺, C₃₆H₃₆NaO₂₀).

Asperulogenin (=(2aR,4aS,7aR,7bS)-2a,4a,5,7,7a,7b-Hexahydro-4-(hydroxymethyl)-1H-2,6-dioxacyclopenta[cd]inden-1-one; **2**): Amorphous powder. $[a]_{24}^{24} = +10.4$ (c = 0.1, MeOH). ¹H- and ¹³C-NMR: Table 2. ESI-MS (pos.): 197.0 ($[M + H]^+$, $C_{10}H_{13}O_4^+$).

REFERENCES

- [1] E. Minareci, K. Yildiz, A. Cirpici, Sci. Res. Essays 2010, 5, 2472.
- [2] F. Ehrendorfer, E. Schönbeck-Temesy, in 'Flora of Turkey and East Aegean Islands', Ed. P. H. Davis, University Press, Edinburgh, 1982, Vol. 7, pp. 734–767.
- [3] T. Baytop, 'Theraphy with Medicinal Plants in Turkey: Past and Present', Nobel Tıp Kitabevi, İstanbul, 1999, p. 371.
- [4] O. Tzakou, K. Lempesis, A. Loukis, Nat. Prod. Commun. 2011, 6, 237.
- [5] A. Park, H. J. Kim, J. S. Lee, E. R. Woo, H. Park, Y. S. Lee, J. Nat. Prod. 2002, 65, 1363.
- [6] U. Ozgen, C. Kazaz, H. Secen, M. Coskun, Turk. J. Chem. 2006, 30, 15.
- [7] K. R. Markham, H. Geiger, in 'The Flavonoids Advances in Research since 1986', Ed. J. B. Harborne, Chapman & Hall, London, 1994, pp. 441–473.
- [8] M. Sikorska, Acta Pol. Pharm. 2003, 60, 471.
- [9] H. Otsuka, K. Yoshimura, K. Yamasaki, M. C. Cantoria, Chem. Pharm. Bull. 1991, 39, 2049.
- [10] O. Tzakou, P. Mylonas, C. Vagias, P. V. Petrakis, Z. Naturforsch., C 2007, 62, 597.
- [11] S. Yang, S. Park, D. Ahn, J. H. Yang. D. K. Kim, Biomol. Ther. 2011, 19, 336.
- [12] A. Cheminat, R. Zawatzky, H. Becker, R. Brouillard, Phytochemistry 1988, 27, 2787.
- [13] J. G. Diaz, W. Herz, Phytochemistry 2010, 71, 463.
- [14] E. Pale, M. Kouda-Bonafos, M. Nacro, M. Vanhaelen, R. Vanhaelen-Fastre, *Phytochemistry* 2003, 64, 1395.
- [15] M. Mitova, N. Handjieva, S. Spassov, S. Popov, Phytochemistry 1996, 42, 1227.
- [16] T. Kajimoto, M. Hidaka, K. Shoyama, T. Nohara, *Phytochemistry* 1989, 28, 2701.
- [17] M. D. J. Dongfack, H. T. Van-Dufat, M.-C. Lallemand, J.-D. Wansi, E. Seguin, F. Tillequin, J. Wandji, *Chem. Pharm. Bull.* 2008, 56, 1321.
- [18] K. A. Abdel-Shafeek, M. M. El-Messiry, A. A. Shahat, S. Apers, L. Pieters, M. M. Seif-El Nasr, J. Nat. Prod. 2000, 63, 845.
- [19] A. Natali, J. F. Manen, F. Ehrendorfer, Ann. Missouri Bot. Gard. 1995, 82, 428.

Received Feberary 24, 2014